147 research outputs found

    Opportunistic Sensing in Train Safety Systems

    Get PDF
    Train safety systems are complex and expensive, and changing them requires huge investments. Changes are evolutionary and small. Current developments, like faster - high speed - trains and a higher train density on the railway network, have initiated research on safety systems that can cope with the new requirements. This paper presents a novel approach for a safety subsystem that checks the composition of a train, based on opportunistic sensing with a wireless sensor network. Opportunistic sensing systems consist of changing constellations sensors that, for a limited amount of time, work together to achieve a common goal. Such constellations are selforganizing and come into being spontaneously. The proposed opportunistic sensing system selects a subset of sensor nodes from a larger set based on a common context.We show that it is possible to use a wireless sensor network to make a distinction between carriages from different trains. The common context is acceleration, which is used to select the subset of carriages that belong to the same train out of all the carriages from several trains in close proximity. Simulations based on a realistic set of sensor data show that the method is valid, but that the algorithm is too complex for implementation on simple wireless sensor nodes. Downscaling the algorithm reduces the number of processor execution cycles as well as memory usage, and makes it suitable for implementation on a wireless sensor node with acceptable loss of precision. Actual implementation on wireless sensor nodes confirms the results obtained with the simulations

    Opportunistic Sensing in Wireless Sensor Networks

    Get PDF
    Opportunistic sensing systems consist of changing constellations of wireless sensor nodes that, for a limited amount of time, work together to achieve a common goal. Such constellations are self-organizing and come into being spontaneously. This paper presents an opportunistic sensing system to select a subset of sensor nodes out of a larger set based on a common context. We show that it is possible to use a wireless sensor network to make a distinction between carriages from different trains. The common context in this case is acceleration, which is used to select a subset of carriages that belong to the same train. Simulations based on a realistic set of sensor data establish that the method is valid, but that the algorithm is too complex for implementation. Downscaling reduces the number of processor execution cycles as well as memory usage, and makes the algorithm suitable for implementation on a wireless sensor node with acceptable loss of precision. Actual implementation on wireless sensor nodes confirms the results obtained with the simulations

    Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science

    Get PDF
    The domain of the surface ocean and lower atmosphere is a complex, highly dynamic component of the Earth system. Better understanding of the physics and biogeochemistry of the air-sea interface and the processes that control the exchange of mass and energy across that boundary define the scope of the Surface Ocean-Lower Atmosphere Study (SOLAS) project. The scientific questions driving SOLAS research, as laid out in the SOLAS Science Plan and Implementation Strategy for the period 2004-2014, are highly challenging, inherently multidisciplinary and broad. During that decade, SOLAS has significantly advanced our knowledge. Discoveries related to the physics of exchange, global trace gas budgets and atmospheric chemistry, the CLAW hypothesis (named after its authors, Charlson, Lovelock, Andreae and Warren), and the influence of nutrients and ocean productivity on important biogeochemical cycles, have substantially changed our views of how the Earth system works and revealed knowledge gaps in our understanding. As such SOLAS has been instrumental in contributing to the International Geosphere Biosphere Programme (IGBP) mission of identification and assessment of risks posed to society and ecosystems by major changes in the Earth́s biological, chemical and physical cycles and processes during the Anthropocene epoch. SOLAS is a bottom-up organization, whose scientific priorities evolve in response to scientific developments and community needs, which has led to the launch of a new 10-year phase. SOLAS (2015–2025) will focus on five core science themes that will provide a scientific basis for understanding and projecting future environmental change and for developing tools to inform societal decision-making
    • 

    corecore